Definition from ISO/CD 10303-41:1992: The function returns the dimensional exponents of the given SI-unit.
Argument definitions:
N : (input) the name of the unit for which the dimensional exponents will be returned.
FUNCTION IfcDimensionsForSiUnit
(n : IfcSiUnitName ) : IfcDimensionalExponents;
CASE n OF
METRE : RETURN (IfcDimensionalExponents
(1, 0, 0, 0, 0, 0, 0));
SQUARE_METRE : RETURN (IfcDimensionalExponents
(2, 0, 0, 0, 0, 0, 0));
CUBIC_METRE : RETURN (IfcDimensionalExponents
(3, 0, 0, 0, 0, 0, 0));
GRAM : RETURN (IfcDimensionalExponents
(0, 1, 0, 0, 0, 0, 0));
SECOND : RETURN (IfcDimensionalExponents
(0, 0, 1, 0, 0, 0, 0));
AMPERE : RETURN (IfcDimensionalExponents
(0, 0, 0, 1, 0, 0, 0));
KELVIN : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 1, 0, 0));
MOLE : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 0, 1, 0));
CANDELA : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 0, 0, 1));
RADIAN : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 0, 0, 0));
STERADIAN : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 0, 0, 0));
HERTZ : RETURN (IfcDimensionalExponents
(0, 0, -1, 0, 0, 0, 0));
NEWTON : RETURN (IfcDimensionalExponents
(1, 1, -2, 0, 0, 0, 0));
PASCAL : RETURN (IfcDimensionalExponents
(-1, 1, -2, 0, 0, 0, 0));
JOULE : RETURN (IfcDimensionalExponents
(2, 1, -2, 0, 0, 0, 0));
WATT : RETURN (IfcDimensionalExponents
(2, 1, -3, 0, 0, 0, 0));
COULOMB : RETURN (IfcDimensionalExponents
(0, 0, 1, 1, 0, 0, 0));
VOLT : RETURN (IfcDimensionalExponents
(2, 1, -3, -1, 0, 0, 0));
FARAD : RETURN (IfcDimensionalExponents
(-2, -1, 4, 2, 0, 0, 0));
OHM : RETURN (IfcDimensionalExponents
(2, 1, -3, -2, 0, 0, 0));
SIEMENS : RETURN (IfcDimensionalExponents
(-2, -1, 3, 2, 0, 0, 0));
WEBER : RETURN (IfcDimensionalExponents
(2, 1, -2, -1, 0, 0, 0));
TESLA : RETURN (IfcDimensionalExponents
(0, 1, -2, -1, 0, 0, 0));
HENRY : RETURN (IfcDimensionalExponents
(2, 1, -2, -2, 0, 0, 0));
DEGREE_CELSIUS : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 1, 0, 0));
LUMEN : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 0, 0, 1));
LUX : RETURN (IfcDimensionalExponents
(-2, 0, 0, 0, 0, 0, 1));
BECQUEREL : RETURN (IfcDimensionalExponents
(0, 0, -1, 0, 0, 0, 0));
GRAY : RETURN (IfcDimensionalExponents
(2, 0, -2, 0, 0, 0, 0));
SIEVERT : RETURN (IfcDimensionalExponents
(2, 0, -2, 0, 0, 0, 0));
OTHERWISE : RETURN (IfcDimensionalExponents
(0, 0, 0, 0, 0, 0, 0));
END_CASE;
END_FUNCTION;