IfcCartesianTransformationOperator3DnonUniform

Natural language names
deKartesischeTransformation - dreidimensional nicht gleichmäßig (3D)
enCartesian Transformation Operator3 Dnon Uniform
frOpérateur 3D de transformation cartésienne non uniforme
Change log
ItemSPFXMLChangeDescription
IFC4 Addendum 1
    IfcCartesianTransformationOperator3DnonUniform
      ScaleMODIFIEDType changed from REAL to IfcReal.
      Scale2MODIFIEDType changed from REAL to IfcReal.
      Scale3MODIFIEDType changed from REAL to IfcReal.
Semantic definitions at the entity
Entity definition

A Cartesian transformation operator 3d non uniform defines a geometric transformation in three-dimensional space composed of translation, rotation, mirroring and non uniform scaling. Non uniform scaling is given by three different scaling factors:

If the Scale factor (at supertype IfcCartesianTransformationOperator) is omitted, it defaults to 1.0. If the Scale2 or the Scale3 factor is omitted, it defaults to the value of Scale (the x axis scale factor).

NOTE  The scale factor (Scl) defined at the supertype IfcCartesianTransformationOperator is used to express the calculated Scale factor (normally x axis scale factor).
HISTORY  New entity in IFC2x.
Attribute definitions
#AttributeTypeCardinalityDescription C
6Scale2IfcReal[0:1] The scaling value specified for the transformation along the axis 2. This is normally the y scale factor.X
7Scale3IfcReal[0:1] The scaling value specified for the transformation along the axis 3. This is normally the z scale factor.X
Scl2
:=NVL(Scale2, SELF\IfcCartesianTransformationOperator.Scl)
IfcReal[1:1]The derived scale S(2) of the transformation along the axis 2 (normally the y axis), equal to Scale2 if that exists, or equal to the derived Scl1 (normally the x axis scale factor) otherwise. X
Scl3
:=NVL(Scale3, SELF\IfcCartesianTransformationOperator.Scl)
IfcReal[1:1]The derived scale S(3) of the transformation along the axis 3 (normally the z axis), equal to Scale3 if that exists, or equal to the derived Scl1 (normally the x axis scale factor) otherwise. X
Formal Propositions
RuleDescription
Scale2GreaterZeroThe derived scaling Scl2 shall be greater than zero.
Scale3GreaterZeroThe derived scaling Scl3 shall be greater than zero.
Inherited definitions from supertypes
Entity inheritance IfcCartesianTransformationOperator3D IfcCartesianTransformationOperator IfcGeometricRepresentationItem IfcRepresentationItem
Attribute inheritance
#AttributeTypeCardinalityDescriptionC
IfcRepresentationItem
LayerAssignmentIfcPresentationLayerAssignment
@AssignedItems
S[0:1]Assignment of the representation item to a single or multiple layer(s). The LayerAssignments can override a LayerAssignments of the IfcRepresentation it is used within the list of Items. X
StyledByItemIfcStyledItem
@Item
S[0:1]Reference to the IfcStyledItem that provides presentation information to the representation, e.g. a curve style, including colour and thickness to a geometric curve. X
IfcGeometricRepresentationItem
IfcCartesianTransformationOperator
1Axis1IfcDirection[0:1] The direction used to determine U[1], the derived X axis direction.X
2Axis2IfcDirection[0:1] The direction used to determine U[2], the derived Y axis direction.X
3LocalOriginIfcCartesianPoint[1:1] The required translation, specified as a cartesian point. The actual translation included in the transformation is from the geometric origin to the local origin.X
4ScaleIfcReal[0:1] The scaling value specified for the transformation.X
Scl
:=NVL(Scale, 1.0)
IfcReal[1:1]The derived scale S of the transformation, equal to scale if that exists, or 1.0 otherwise. X
Dim
:=LocalOrigin.Dim
IfcDimensionCount[1:1]The space dimensionality of this class, determined by the space dimensionality of the local origin. X
IfcCartesianTransformationOperator3D
5Axis3IfcDirection[0:1] The exact direction of U[3], the derived Z axis direction.X
U
:=IfcBaseAxis(3,SELF\IfcCartesianTransformationOperator.Axis1, SELF\IfcCartesianTransformationOperator.Axis2,Axis3)
IfcDirectionL[3:3]The list of mutually orthogonal, normalized vectors defining the transformation matrix T. They are derived from the explicit attributes Axis3, Axis1, and Axis2 in that order. X
IfcCartesianTransformationOperator3DnonUniform
6Scale2IfcReal[0:1] The scaling value specified for the transformation along the axis 2. This is normally the y scale factor.X
7Scale3IfcReal[0:1] The scaling value specified for the transformation along the axis 3. This is normally the z scale factor.X
Scl2
:=NVL(Scale2, SELF\IfcCartesianTransformationOperator.Scl)
IfcReal[1:1]The derived scale S(2) of the transformation along the axis 2 (normally the y axis), equal to Scale2 if that exists, or equal to the derived Scl1 (normally the x axis scale factor) otherwise. X
Scl3
:=NVL(Scale3, SELF\IfcCartesianTransformationOperator.Scl)
IfcReal[1:1]The derived scale S(3) of the transformation along the axis 3 (normally the z axis), equal to Scale3 if that exists, or equal to the derived Scl1 (normally the x axis scale factor) otherwise. X
Formal representations
XSD Specification
 <xs:element name="IfcCartesianTransformationOperator3DnonUniform" type="ifc:IfcCartesianTransformationOperator3DnonUniform" substitutionGroup="ifc:IfcCartesianTransformationOperator3D" nillable="true"/>
 <xs:complexType name="IfcCartesianTransformationOperator3DnonUniform">
  <xs:complexContent>
   <xs:extension base="ifc:IfcCartesianTransformationOperator3D">
    <xs:attribute name="Scale2" type="ifc:IfcReal" use="optional"/>
    <xs:attribute name="Scale3" type="ifc:IfcReal" use="optional"/>
   </xs:extension>
  </xs:complexContent>
 </xs:complexType>
EXPRESS Specification
ENTITY IfcCartesianTransformationOperator3DnonUniform
 SUBTYPE OF (IfcCartesianTransformationOperator3D);
  Scale2 : OPTIONAL IfcReal;
  Scale3 : OPTIONAL IfcReal;
 DERIVE
  Scl2 : IfcReal := NVL(Scale2, SELF\IfcCartesianTransformationOperator.Scl);
  Scl3 : IfcReal := NVL(Scale3, SELF\IfcCartesianTransformationOperator.Scl);
 WHERE
  Scale2GreaterZero : Scl2 > 0.0;
  Scale3GreaterZero : Scl3 > 0.0;
END_ENTITY;

Link to EXPRESS-G diagram EXPRESS-G diagram

Link to this page  Link to this page